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A two-dimensional acoustical waveguide described by two infinite parallel lines a 
distance 2d apart has a circle of radius a < d positioned symmetrically between them. 
The potential satisfies the two-dimensional Helmholtz equation in the fluid region 
between the circle and the lines, and the normal gradient of the potential vanishes 
on both. For motions which are antisymmetric about the centreline of the guide there 
exists a cutoff frequency below which no propagation down the guide is possible. It 
is proved that for a circle of sufficiently small radius there exists a trapped mode, 
having a frequency close to the cutoff frequency, which is antisymmetric about the 
centreline of the guide and symmetric about a line through the centre of the circle 
perpendicular to the centreline. The method used is due to Ursell (1951) who 
established the existence of a trapped surface wave mode in the vicinity of a long 
totally submerged horizontal circular cylinder of small radius in deep water. 
Numerical computations in the present work reveal that a single trapped mode 
appears to exist for all values of a < d and not just when the circle is small. The 
present method, when used to attempt to construct a solution antisymmetric about 
both the centreline and a line perpendicular to it through the centre of the circle does 
not lead to a trapped mode. The trapped modes can equally well be regarded as 
surface-wave modes, as in an infinitely long tank of water with a free surface, into 
which has been placed symmetrically, a vertical rigid circular cylinder extending 
throughout the depth. Numerical evidence for the existence of such trapped modes 
when the cylinder is of rectangular cross-section was presented in Evans & Linton 
(1991). 

1. Introduction 
The existence of trapped modes in linearized water-wave theory was first 

established by Ursell (1951). He proved that modes of oscillation which have a 
frequency below a certain cutoff frequency exist in the vicinity of an infinitely long 
submerged horizontal cylinder of sufficiently small radius, in deep water. In a highly 
mathematical paper, Jones (1953), using results from the theory of unbounded 
operators, generalized Ursell’s results to cylinders of arbitrary but symmetric cross- 
section, and finite water depth. More recently Ursell (1987) has provided a simplified 
proof of Jones’ results using minimum-energy arguments. 

Less is known about trapped modes in linear acoustics where the governing 
equation is the Helmholtz equation although the major part of the paper by Jones 
(1953) is, in fact, devoted to this equation. Numerical evidence for their existence is 
provided by recent work of Evans & Linton (1991) who computed the frequencies of 
trapped modes which occur in an open water channel containing a symmetrically 
placed rectangular block extending throughout the water depth. These trapped 
modes, which do not appear to have been discovered previously, are antisymmetric 
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about the centreplane of the channel, and have a wave frequency depending upon the 
dimensions of the block relative to  the channel, being below the so-called cutoff 
frequency for the channel. The modes are characterized by having finite total energy, 
being restricted to the vicinity of the block and decaying rapidly to zero with 
distance down the channel. The number of such modes increases as the length of the 
block increases; for a block of length less than the channel width there is just a single 
mode. 

McIver (1991) has used matched asymptotic expansions to derive a general 
expression for the trapped mode frequency above submerged horizontal cylinders of 
arbitrary but small cross-section which agrees with the Ursell (1951) result for the 
submerged small circular cylinder, and has also derived the trapped mode frequency 
for antisymmetric trapped modes in the vicinity of a vertical cylinder of arbitrary 
but small cross-section in a water channel of infinite extent. Evans & McIver (1991) 
have derived similar results for the trapped mode frequency close to cutoff, under the 
assumption that the bodies were thin and symmetric. In both the vertical cylinder 
problems considered by McIver (1991) and Evans & McIver (1991) and the problem 
considered by Evans & Linton (1991), the depth dependence can be separated out 
and the problems reduce to an acoustic problem for the solution of the two- 
dimensional Helmholtz equation in a waveguide described by two parallel lines 
enclosing a symmetrically placed cylindrical section, with vanishing normal gradient 
on all rigid boundaries. 

Trapped modes in acoustics are of considerable interest in providing an example 
of the non-uniqueness of the boundary-value problem arising when the cylindrical 
section makes simple harmonic oscillations, which are antisymmetric about the 
centreline of the waveguide, a t  the trapped mode frequency. Since neither the 
treatment of Evans & McIver (1991), Evans & Linton (1991) nor that of McIver 
(1991) is fully rigorous, nor do such problems appear to be covered by Jones’ (1953) 
general theory, it is desirable that a completely rigorous proof of the existence of 
trapped modes in acoustic waveguides be presented in a specific case. 

The problem to be considered here is probably the simplest configuration for which 
the method of proof to be used is likely to be successful. A two-dimensional acoustic 
waveguide is represented by two parallel lines y = +d,  - 00 < x < co enclosing a 
circle xz + y2 = a2 with radius a < d. A potential 4 is sought satisfying Helmholtz’s 
equation in the fluid region and having vanishing normal gradient on the circle and 
the parallel lines. The potential is assumed to  be odd in y so that it vanishes on 
y = 0 thus ensuring that a cutoff frequency exists below which no propagation down 
the guide is possible, and even in x. 

The method of construction is precisely that used by Ursell (1951) in proving the 
existence of trapped surface waves above a small submerged horizontal cylinder. 
Specifically, multipole potentials, odd in y, even in x, are constructed which, for 
frequencies less than the cutoff frequency, do not radiate energy down the 
waveguide. These potentials, each of which satisfies all conditions except that on the 
circle itself, are singular a t  the centre of the circle but not in the fluid region. The 
trapped mode potential is then constructed from a linear combination of all possible 
multipoles. Application of the circle boundary condition results in a homogeneous 
infinite system of equations for the unknown coefficients in the multipole expansion 
of the trapped mode potential. It is proved that the elements of the infinite matrix 
of this system are such as to guarantee that the system behaves in all respects like 
a finite system, under certain geometrical conditions on a,d.  I n  particular the 
determinant A ,  of the truncated N x N system tends uniformly to the infinite 
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determinant A ,  as N +  00. All that remains to prove the existence of a trapped mode 
is to show that A ,  vanishes for some real values of the parameters of the problem and 
that for these values the trapped mode potential does not vanish identically. In a 
manner which follows closely that used by Ursell (1951) it is proved that for 
sufficiently small cylinders close to the cutoff frequency the infinite determinant does 
indeed vanish when a certain relation between the parameters is satisfied. 
Computations of A ,  for increasing N also indicate that A ,  vanishes just once for all 
real a < d .  

It is possible to use the same construction to seek trapped modes which are odd in 
y and also odd in x, but it turns out that this does not lead to trapped modes for any 
values of ald. 

2. Formulation 
We seek a potential $(x,y) satisfying 

( V 2 + k 2 ) $  = 0 in r > a, IyI < d ,  r = (x2+y2)i, (2.1) 

$ 2 1 = 0 ,  IyI = d ,  -00 < X <  00 (2.2) 

$4. = 0, r = a, (2.3) 

$ = 0, y = 0, 1x1 2 a, (2.4) 

$ + O ,  IxI+0O, IYI < d .  (2.5) 

Thus $ can be regarded as a time-independent acoustic potential, the actual 
potential being derived from Re $ exp (iwt) where k = w / c  and c is the velocity of 
sound. Equivalently as in Evans & Linton (1991) the equations describe a water- 
wave problem in which a vertical cylinder extends throughout the depth H thereby 
permitting a depth dependence cosh k(z  + H )  to be separated out from the governing 
Laplace's equation. In this case k is the positive real root of 

w2 = gk tanh kH. 

Note that the crucial necessary condition for a trapped mode is condition (2.4) since, 
provided k < n/2d, no wave radiation to x = 00 is possible. We shall impose the 
further condition 

$ , = O ,  x = O ,  a < y < d ,  (2.6) 

so that $ is even in x and we need only seek 4 in x 2 0, 0 < y < d,  r 2 a, with (2.4), 
(2.6) providing the extension of $ to the larger fluid region. 

In the absence of the channel walls a fundamental multipole which satisfies (2.1) 
and (2.4) is 

where HE) = J,+iY,, x = TCOSO, y = rsin 8 and H t ) ,  J,, Y, are the usual Bessel 
functions as defined in, for example Watson (1966). For n = 2m+ 1, m integer, this 
is symmetric about x = 0 and satisfies (2.6), whilst for n = 2m, m integer, we have 
antisymmetry about x = 0. The corresponding expression with sin n8 replaced by 
cosn8 is even in y and even/odd in x according as to whether n is even/odd. The 
expression (2.7) with n = 2m+ 1 will be the building block for constructing trapped 
modes. We first need to add image terms at  y = +2jd, j = 1,2, . .., to ensure that (2.2) 
is satisfied. It is sufficient to consider 0 < y < d only and choose functions odd in y 

Hkl)(kr) sin n8, (2.7) 
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to satisfy (2.2) on y = -d  and (2.4). It is shown in Appendix A that the suitably 
modified multipole is 

$2n+l(r, 8)  = Kn+l(kT) sin (2n+ 1) 8 
( - I ) ,  m+in eyd 

+ R e T - J - w  
sinh yy cos (kx cosh v) e-(2n+1)u dv (2.8) 

where y = k sinh v and where the contour is taken along the negative real axis, up to 
the imaginary axis to in and then along the line ix+s, s > 0. The expression (2.8) 
satisfies (2.1), except at r = 0, (2.2) for y =d from (A 3), (2.4), (2.6) and, from (A 6), 
(2.5). It is also shown in Appendix A to have the expansion 

m 

$2n+l(r,  8)  = &n+l(kr) sin (2n+ 1 )  8+ A,, J2m+l(kr) sin !2m+ 1) 8, (2.9) 
m-0 

valid for r > 0, where 

e-ydsinh (2n+ 1 )  vsinh (2m+ 1) v 
cosh (yd ) 

dv 
- 4  A,, = -( - l),+, x 

-1r tan (Pd)  cos (2n+ 1 )  u cos (2mf 1)  udu, 

where p = k c o s u .  

We now seek a trapped mode solution in the form 

(2.10) 

m 

$ ( r ,  8)  = X k-'an(qn+l(ka))-' Zlrzn+l(r, 8),  (2.11) 

where the dash refers to the derivative with respect to the argument. Application of 
the cylinder condition (2.3) to (2.11) gives, using (2.9) 

J'm+l(ka)sin (2m+ i ) e  = o (0 < 8 < in), (2.12) 

whence multiplication by sin (2m + 1) B and integration over [ O , ~ G ]  results in the 
homogeneous infinite system of equations 

n-0 

I m 2 an{sin(2n+1)8+ m-0 x Am, y 2n+l (ha) 
n-0 

where 

00 

a,+ X Bmnan = 0 (m = O,1,2, ...), 
n-0 

(2.13) 

(2.14) 

It is shown in Appendix B that 
m m  c IB,,l < co for 0 < ka c kd < in, coth x < Jf(ka)-2,  (2.15) 

m-0 n-0 

where kd cosh x = in, and M is independent of ka, kd, which is sufficient to  ensure that 
the determinant 4, of the truncated system 

N 

a,+ B,,a, = 0 (m = 0,1 ,  ..., N ) ,  
n-0 

(2.16) 
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converges uniformly to a limit A ,  (Ursell 1951, p. 357). We can also conclude that 
the system (2.13) behaves in every respect like a finite system and in particular has 
a non-trivial solution with Elam( < co if and only if the infinite determinant 

A ,  = det (6,,+B,,(ka, k d ) )  (2.17) 

vanishes for some ka, kd, with 0 < ka < kd < in and cothx < M(ka)-2.  
Now the behaviour of the infinite system as ka + 0, kd fixed, is governed by the 

behaviour of the Bessel functions in the definition of B,, given by (2.14) since A,, 
is independent of ka. We have from (C 2)  in Appendix C 

(2.18) 

so that B,, + 0, all m, n as ka-+O, and the only possible solution of (2.13) in this limit 
is a, = 0. If however ka -+ 0 and kd +. in simultaneously, it turns out to be possible to 
obtain a trapped mode solution similar to that obtained by Ursell (1951) in the 
horizontal submerged cylinder case. Thus it is shown in Appendix C that the first 
integral in the definition of A,, given by (2.10) is bounded as kd -+in and the second 
is not. From (C 4) we have 

A,, - - 8n-1 coth x as x + 0, (2.19) 

where kd cosh x = in. (2.20) 

Thus 
-8(2m+ 1 )  (+ka)zn+2m+2 

Bmn - (2n+1) (2n+l ) !  tanhx ' 
(2.21) 

as ka+O, x+O. 

Boo tend to zero as ka, x+ 0. 
It follows that if (ka)2/tanhx = 0(1) as ka, x + O ,  then all elements of B,, except 

Let (ka)2 = ;A tanh x, (2.22) 

for some fixed A > 0. Then 

- (2m+ 1 )  A(ka)2fl+2m 
(2n + 1)  (2n + 1 )  ! (ka + 01, B m n  - (2.23) 

and, since A ,  is uniformly convergent 

d,(ka, A )  = det (a,, +B,,(ka, A ) )  

+ det (arnn + lim B,,(ka, A ) )  

= l - A .  (2.24) 
ka+O 

It follows from (2.24) that there exists a range of ka, say 0 < ka < 6,  for which 

A,(ka,+) > 0, d,(ka,%) < 0. 

Fix ka > 0 in this range. Then A,(ka, A )  passes continuously from a negative value 
to a positive value as A increases from ; to t .  In particular there must exist a value 
of A = Ao(ka) for which 

A,(ka, Ao(ka)) = 0. (2.25) 



56 

It is also clear from (2.24) that A, - 1 as ka + 0 so that from (2.22) 
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2 ( k ~ ) ~  - tanhx - x, (2.26) 

in agreement with McIver (1991) to this order. 
For A = A, then, there exists a non-trivial solution {a,} of (2.13) with Z(a,l < a, 

and the expression (2.11) describes a trapped mode provided it does not vanish 
identically and provided coth x < M(ka)-2 when (2.26) is satisfied which is clearly the 
case. Furthermore it is shown in Appendix D that @ + 0 and t,hat the expansion 
(2.11) for q5 converges like Zlanl/(2n+ 1) .  I n  a similar fashion it can be shown that the 
series for the velocity components obtained from Vq5 converges like Zla,l. It follows 
that (2.11) does indeed represent a trapped mode when (2.25) is satisfied. 

We can seek a trapped mode solution which is both odd in y and in x by expanding 
in terms of multipoles also odd in y and x. The resulting homogeneous infinite system 
differs from (2.13), (2.14), (2.10) in that 2n+ 1,  2m+ 1 are replaced by 2n, 2m 
respectively and a factor of ~, (q, = 1,  8, = 2, m = 1,2, . . .) must be included in the 
right-hand side of (2.10). If we attempt to repeat the preceding argument in this case 
to prove the existence of a trapped mode in the limit ka + 0, kd -+ in we find that the 
construction fails. 

Condition (2.15) ensures that the truncated determinant A ,  converges uniformly 
to the limit A ,  so that trapped modes can be obtained numerically by finding the 
zeros of A ,  as N increases. A description of this procedure and the results obtained 
is given in the next section. 

3. Numerical results 
The computation of the integrals in (2.10) and the Bessel functions in (2.14) for 

different ka, kd is straightforward enabling A ,  to  be determined from (2.16) using a 
standard library routine. However, it was found that the value of N required to 
obtain a given accuracy in A ,  was strongly dependent on the value of a l d .  It is 
possible to  reduce this dependence slightly by normalizing A ,  by dividing the mth 
row by 1 +A,,  (m = 0, 1,2, . . .) as in the case of the rectangular block considered by 
Evans & Linton (1991). It should be noted, however, that whereas this was necessary 
to ensure numerical convergence of A ,  as N +  co in that case, here the convergence 
is already guaranteed. 

Figure 1 shows curves of A ,  plotted against kd for five values of a l d  together with 
the value of N used in the calculation which ensures three significant figures of 
accuracy in the results. All the curves exhibit the same qualitative behaviour. As 
kd+O, A ,  tends to a positive constant, whilst as kd+$n,  A , + - c o  and A ,  has 
precisely one zero corresponding to the trapped mode frequency. An examination of 
the definition of A,, given by (2.10) shows that with a / d  fixed, as kd+O the infinite 
integral is dominant whereas as kd++n the finite integral is the dominant one. The 
results in the figure show that as kd + 0, a / d  fixed, the growth of the infinite integral 
is just balanced by the behaviour of J ~ , + , ( k a ) / Y ~ , + , ( k a )  leading to a constant 
positive value for the determinant whereas in the limit kd +&n the Bessel functions 
do not vanish and the singular behaviour of the finite integral given by (B 5) results 
in the determinant tending to negative infinity. 

Similar computations can be carried out for the infinite system arising from an 
attempt to construct trapped modes which are antisymmetric about x = 0. The same 
remarks concerning the qualitative behaviour in the kd+O limit apply in this case 
and again as kd++n, A ,  becomes infinite but since Jh(ka)/Yh(ka) is of opposite sign 
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to Jt (ka) /Yl (ka) ,  A,++ao and computations indicate that A ,  has no zeros and 
hence there can be no trapped modes. This is consistent with the numerical results 
for the rectangular block obtained by Evans & Linton (1991), where it appeared that 
there were no trapped modes, antisymmetric about x = 0, unless a/d > 1 where a was 
the half-length of the block along the channel. 

The values that are obtained for the trapped mode frequencies in the symmetric 
case are plotted in figure 2 together with the values obtained from the approximate 
formula 

kd N $n(l - @ ' ( ~ / d ) ~ ) ,  (3.1) 

which is a direct consequence of (2.26), valid for a / d  + 0,  kd + in. The curves show 
that this formula is only applicable for a /d  less than about 0.2, however computations 
confirm that (3.1) is extremely accurate for a/d < 0.1. 

Just as for the rectangular block considered by Evans & Linton (1991), having 
similar dimensions to the circle considered here, figure 2 shows that there is little 
change in the trapped mode parameter kd as ald varies, the minimum value being 
kd x 1.32. As a/d  + 1, kd - 1.4 in contrast to the block case where kd - in. This 
latter result is explained in terms of the geometry of this limit since, as the block 
cuts off the entire channel the fundamental standing wave for the channel, having 
kd = in, is approached. In contrast, when the circle occupies the entire width of the 
waveguide so that a/d = 1, there would appear to be a single non-trivial trapped 
mode with kd < in. This is also in contrast to the case of the trapped surface wave 
modes above a horizontal submerged circular cylinder considered by Ursell (1951) 
and McIver & Evans (1985). In this case as a /d  +. 1 and the cylinder approached the 
surface, numerical calculations suggested that the number of trapped modes 
increased indefinitely. This behaviour could be explained as follows. The limit is 
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FIQURE 2. Variation of the trapped mode frequency parameter kd with a f d ,  the ratio of cylinder 
radius to channel half-width. The dotted line is the approximate relation (3.1) for small a/d derived 
from (2.26). 

similar to edge waves over a gently sloping curved beach and i t  is known that the 
number of edge waves over a uniformly sloping beach increases as the beach angle 
tends to  zero (Ursell 1952). In  the present case the situation is different since it is the 
antisymmetry across the boundary y = 0 that guarantees a cutoff frequency and the 
possibility of trapped modes rather than the free-surface condition on y = d as in 
the horizontal cylinder case. 

This conclusion about the existence of a trapped mode in the case a = d is not 
inconsistent with the proof given in Appendix B that the infinite system converges 
when a ld  < 1 since the conditions for convergence are only sufficient. It is not clear 
how the bounds leading to  (B 8) could be improved to include a = d.  

4. Conclusion 
It has been proved that there exists a trapped mode, or a local oscillation of well- 

defined frequency in the vicinity of a vertical fixed rigid circular cylinder 
symmetrically placed in a two-dimensional waveguide represented by two parallel 
lines enclosing a symmetrically-placed circle, or, equivalently, in an open water 
channel. The frequency of the oscillation is below the fundamental cutoff frequency 
for the channel or guide and depends upon the ratio of circle radius to guide width. 
The oscillation is antisymmetric about the centreline of the guide and symmetric 
about a vertical line perpendicular to  the parallel walls. No trapped mode 
antisymmetric about both lines was found. An explicit relation between the radius 
of the circle and the trapped mode frequency parameter kd was found when the 
radius was small and the trapped mode frequency approached the cutoff frequency 
for the guide. The present work, by providing a rigorous proof of the existence of 
acoustic trapped modes in this particular case, extends our knowledge and 
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understanding of thesc modes, complcmenting recent numerical work on vertical 
rectangular cylinders by Evans & Linton (1991) and approximate methods for 
vertical small cylinders of arbitrary cross-section by McIver (1991) or thin bodies by 
Evans & McIver (1991). The possibility of trapped modes over totally submerged 
horizontal cylinders or over sloping beaches has been known for some time and 
oceanographers have observed these modes, more commonly called edge waves, over 
continental shelves. A good description is given by LeBlond and Mysak (1978). The 
proof of the existence of trapped modes in an acoustic waveguide given here is 
restrictcd to small circles in parallel Waveguides. However, the numerical evidence 
for acoustic trapped modes in a wide range of situations is overwhelming and there 
can be little doubt of thcir existence in more general waveguide problems. A 
discussion of such problems is given in Evans & Linton (1991). 

It is straightforward to repeat the construction used here for the condition qi = 0 
on the cylinder and to seek possible trapped modes. However, such modes do not 
appear to exist in this case. 

This work was carried out with the support of SERC in the form of a research 
studentship (M. C.) and research grant, number GR/F/32226 (C. M. L.). We would 
also like to thank Dr P. McIver for providing us with his notes on trapped modes 
used in his own work (McIver 1991). Finally we wish to express our acknowledgement 
of the contribution of Professor F. Ursell, whose comments first prompted the search 
for trapped modes in this problem, for a most valuable correspondence, and for 
making available his own notes on the problem which have been incorporated in part 
in the Appendices. 

Appendix A. Derivation and expansion of multipoles 

Erdklyi et al. (1953, vol. 2, p. 20, equation (20)) is 
An integral representation of the Hankel function H g )  due to Sommerfeld, given by 

H ; ~ ) ( L ~ )  = _ _  eikrcosaein(a-$O da ( - -R<a<O,  O < b < n ) .  

The change of variable a = i (v+8) ,  and the choice of a + 8  = 0, b + 8  = K results in 

X rim a + i m  

where x = r cos 8, y = r sin 8, and where the contour is along the negative real axis to 
the origin, up the imaginary axis to iK and then along v = ilc+s, s > 0. It follows that 

HpA+l(kr) sin (2n + 1) 8 = exp yy cos (kx cosh v)  e-(2n+1)v dv, (A 1) 
K 

where y = k sinh v, is an integral representation of the fundamental singular 
multipole satisfying Helmholtz’s equation which is even in x and odd in y. 

We seek to add an expression to (A 1) to satisfy the condition on y = d. We shall 
choose a function odd in y which provides an extension into y < 0 and ensures the 
condition on y = -d is also satisfied. To this end we note that 

3 F I. M 229 
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if A(w) = -eyd/coshyd. 

It follows that the required multipole is 
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q4zn+l(kr, 8) = Hiz+ l (kr )  sin (2n+ 1) 8 

yd sinh yy cos (kx cosh w) e-(2n+1)v dw > (A21 i(- 

? (A31 
- i ( - l )% "+'"coshy(d-y) 

x coshyd 
- - cos (kx cosh w) e-(2n+1)v dv 

where (A 1) has been used in (A 2 )  to obtain (A 3). 

notation 
The contour integral in (A 3 )  can be expressed in three parts in an obvious 

We write w = - w in the first, w = iu + iix in the second and w = ix + w in the third 
to obtain 

q5zn+l(kr, 8) = Hi2+l(kr)sin (2n+ 1 )  8 

sinh yy cos (Icx cosh w) sinh (2n+ 1) w dw x 

sin py cos (kx sin u) cos (2n + 1 )  u du, 

2i( - l)% O0 cosh y(d -y) 
= -  cos(kxcoshw)sinh (2n+1) wdw 

n: Jo coshyd 

2i b cos P(d - y)  
cos (kx sin u) cos (2n + 1 )  u du, -TIo cospd 

where p = k cosu and both integrals are real in (A 5 ) .  
The expression (A 4) clearly vanishes when y = 0. This is not so clear from the 

alternative expression ( A  5 )  but what is made evident from this form is that 
Re4zn+l(kr, 8)  = 0. Also since kd < in, cospd does not vanish for any real u in 
(0, in), and, from the Riemann-Lebesgue lemma 

$zn+l + 0, 1x1 + 7 0 < y < d. ( A  6) 
m 

Now sinhyycos(kxcoshw) = 2 (-l)"J,n+l(kr)sin(2n.+1)wsinh(2n+1)8, (A 7 )  

a result derived from the identity (Watson 1966, p. 15) 

n=o 

m 

e x p ( i z ( ~ - ~ - ~ ) }  = Jo(z)+ 2 ( T ~ + ( - ~ ) ~ T - ~ ) J ~ ( Z ) .  
n=l 

We substitute (A 7 )  into the imaginary part of (A 2 )  to obtain 
m 

$zn+l(kr,  8) = Yzn+l(kr) sin (2n+ 1 )  8+ A,, J2m+1(kr) sin (2m+ 1) 8, (A 8) 
m=O 
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We can split this contour integral into three parts as before to obtain 
-4 e-yd 

A,, = - (- I),+, - sinh ( 2 n f  1) w sinh (2m+ 1) vdw 
x Jo coshyd 

- t l  tan@ cos (2n + 1) u cos (2m + 1) u du, 
x 

where y = ksinhv, /3 = kcosu. 

Appendix B. Proof of convergence of the infinite system 
We shall show that 

m m  

IB,,J < 00 for 0 < ka < kd c ix, cothx < M(ka)-2, 
m-0 n-0 

M a  constant, kd coshx = $x, 
where 
and 

m e -yd sinh (2n + 1) v sinh (2m + 1) v 
dv (y = ksinhv), 4 = Jo cosh (yd) 

I ,  = 

where 

tan (pd ) cos (2n + 1) u cos (2m + 1 ) u du (/3 = k cos u). 

We shall need the following rough bounds on Bessel functions which can be derived 
from their series expansions and asymptotic expansions for large order and fixed 
argument. See, for example, Abramowitz & Stegun (1965) pp. 375, 362, and 364. 

IKn(x)l < %(n- 1) !/(h)", (B 1) 
IJ,(x)l < M,(+x)"-l/(n- 1) !, (B 2)  

and IY,(z)l > M,n!/($x)n+', (B 3)  
for n > N ,  say where the Mt ( i  = 1 , 2 , 3 )  are independent of x, and 0 < x < $x which 
is sufficient for our purposes. 

In estimating I, we shall make use of elementary inequalities involving hyperbolic 
functions. Thus 

1111 < ~me-PkdsinYcoshrwdw ( r  = 2n+2m+2)  
0 

< M, J: e-2kd 'Osh cosh rw dv , 

= M4K,(2kd)  (Watson 1966, p. 181) 

<M5(2n+2m+ l ) ! / (kd )2n+2m+2,  (B 4) 
from (B 1). 

Now W, = rh tan /3d cos (2% + 1 )  u cos (2m + 1) u d u  (p  = k cos u) ,  

3-2 
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and the integrand has poles at u =_+ix, where kdcoshx=$r.  Choose a positive 
number 6, such that 0 < x < and deform the contour of integration upwards over 
the pole a t  u = ix, into the rectangular path 

u = w+i6(-+n < v < i n ;  C : u  = -in+iw (0 < v < 6); u = i n + i v  (6 2 v 2 0). 

Then 21, = 
2n 

kd sinh x cosh (2n + 1) x cosh (2m + 1 ) x + 
where i t  is easily shown that ljel < 2M6(6)exp (2n+2m+2)6 ,  a bound which is 
uniform in 6 as x + O  since 0 < x < $3. Thus 

and 

[6) coth xexp (2n+ 2m + 2 )  6, 

from (B 2 ) ,  (B 3 ) .  
It follows that 

where 

and 

= -g (&),,+, 2 ( 2 r + l ) !  
r=o m + n = r 2 m ! ( 2 n + t ) ! ’  

after summing diagonally. But 
r (2r+ 1) - 22r - (2r + 1) ! c = c  

m+n=r 2m !(2n + 1) ! m=O 2m !(2r - 2m + 1) ! 

where the last series has been summed as (1 +x)~‘+’+ ( I  -x)2r+1 with x = 1. Thus 

a2 s, = 
4(d2--a2) ’ 

provided a / d  < I ,  and hence 
m m  
2 2 JB,,J < constant, 

m=O n=O 

for 0 < ka < kd < in, and cothx <M(ka)-,, from (B 8). 

Appendix C. Behaviour of B,, as ka + 0, kd +in 
We have 

where A,, is given by the two real integrals in (A 10) which depend only upon kd. 
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Now 

from the series expansions of the Bessel function in, for example, Watson (1966). 
It remains to consider A,, as kd+$n. From (B 4) the infinite integral in (A 10) is 

clearly bounded as kd+in, n ,m fixed, so it remains to consider the second integral 
in (A 10) as kd+&n, or x + O .  

From (B 5 )  we see 
I 2 - 2 c o t h x  asX+O, (C 3) 

(C 4) 
8 

and so A,, ---cothX ( x + O ) ,  n 
and finally 

-8(2m+ 1) 
(2n+1) (2n+1)! 

(&ka)2n+2m+2cothX (ka+O,x+O). B m n  N 

Appendix D. Convergence of the trapped mode expansion 
We have, from (2 9) and (2 11) 

$(a ,@ = c I m W an { Y,,+,(ka) sin (2n+ 1) 8+ A,, J,,+,(ka) sin (2m+ 1) 8 
n-0 kY;n+l(ka) m-0 

where (2 12) and the identity 

Jzm+1 %,+I- J;m+1 Y , m + 1 =  2/nka 
(Erd6lyi et al. 1953, vol. 2, p. 79) have been used. 

But J;,+l Y2m+l - (2m+ 1)/n(ka)2, m-t  co, ka fixed, which, since Zla,l < 00, is 
sufficient to  show that the series in (D 1) converges and is clearly non-zero, so that 
the trapped mode potential does not vanish identically. 

We need to show that the series expression (2.11) is convergent for r > a. Consider 
the expression (A4)  for $2,+1 whose imaginary part is @2,+1. Denote the infinite 
integral by I,. For v E (0, co) we have, with y = k sinh w 

and 

e-Yd/cosh yd < 2 e-$yd, sinh yy < eyd, 
e-yd = e-kd cosh v ekd e-” < ekd e-kd cosh v 

Hence, from (B l ) ,  

1 1 ~ 1  < 2 ekd JOw e-kdcoshv cosh(2n+l)vdv = 2ekdK,,+,(kd) 

< 21Ml ekd 2n!/(kd/2)2n+1 for N > n. (D 2) 
Again, denoting the imaginary part of the second integral in (A 4) by Is  we have, 

with u ~ ( O , i n ) ,  p = kcosu, kd < &n, tanpd < tankd, and so, 

IIJ < tan kd. (D 3) 
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Finally (Abramowitz & Stegun 1965, p. 365), 

M. Callan, C. M. Linton and D. V. Evans 

for n large, kr fixed. 
Combining the inequalities (D 2), (D 3) and (D 4) with (B 3) shows that for a < d 

and r 2 a the series for $ ( r ,  0 )  given by (2.11) converges a t  least as fast as 
Clanl/(2n+ 1) whilst the series for V # ( r ,  8 )  converges at  least as fast as Cla,l. 
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